6.5 Average Value of a Function

To calculate the average value of a finite amount of numbers, y;,y,,¥3, ... ¥, We use
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The average value of a function £ defined on an interval [a, b] is more difficult because there is an infinite
number of y values.

We define the average value of £ on the interval [a, b] as:
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favg =mff(x)dx

(The proofis on page 461 in the Calc. text.)
Example: Find the average value of the function on the given interval.

f(t) = eSn® - cos(t) [0,%]
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Let u = sin(t) then du = cos(t)dt. Whent=0 - u=0and whent= g —u=1so00and 1 are the new
limits of integration.
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Example: A hiking trail has an elevation given by:

f(x) = 60x3 — 650x2 + 1200x + 4500

Where f is measured in feet above sea level and x represents horizontal distance along the trail in miles,
with 0 < x < 5. What is the average elevation of the trail?
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favg = mf(60x3 — 650x2 + 1200x + 4500)dx
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The average elevation of the trail is slightly less than 3,960 ft.

The average value of a function bring us close to an important theoretical result. The Mean Value
Theorem for Integrals says that if £ is continuous on [a, b], then there is at least one point, ¢, in the
interval (a, b) such that f{c) equals the average value of £ on (a, b). In other words, the horizontal line

Y = favg intersects the graph of £ for some point ¢ in (a, b).

\ filx)

favg

Note: If fis not continuous, such a
point might not exist.

Mean Value Theorem for Integrals:

Let f be continuous on the integral [a, b]. There exists a point ¢ in [a, b] such that
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Example: Find the point(s) on the interval (0, 1) at which f(x) = 2x(1 — x) equals its average value on
[0, 1].

First find the average value:
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favg = TOJ ZX(]. —x)dx = J(ZX — 2x2)dx
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Now find the point(s), x, where f(x) = %

1

2x(1—x) ==
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1
2x — 2x% = 3 (solve the quadratic equation)

1
0=2x%-2x+ 3 (use the quadratic formula)

2% [4-42) (3)

= ~ 0.211 and 0.789
x 22) an

x = 0.211 and 0.789 is where f(x) = 2x(1-x) equals its average value on [0, 1].




