### 6.5 Average Value of a Function

To calculate the average value of a finite amount of numbers, $y_{1}, y_{2}, y_{3}, \ldots y_{n}$ we use

$$
y_{a v g}=\frac{y_{1}+y_{2}+y_{3}+\cdots+y_{n}}{n}
$$

The average value of a function $f$ defined on an interval $[\mathrm{a}, \mathrm{b}]$ is more difficult because there is an infinite number of $y$ values.

We define the average value of $f$ on the interval $[a, b]$ as:

$$
f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(The proof is on page 461 in the Calc. text.)
Example: Find the average value of the function on the given interval.

$$
\begin{gathered}
f(t)=e^{\sin (t)} \cdot \cos (t)\left[0, \frac{\pi}{2}\right] \\
f_{\text {avg }}=\frac{1}{\frac{\pi}{2}-0} \int_{0}^{\frac{\pi}{2}} e^{\sin (t)} \cdot \cos (t) d t=\frac{1}{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} e^{\sin (t)} \cdot \cos (t) d t
\end{gathered}
$$

Let $\mathbf{u}=\sin (\mathrm{t})$ then $\mathrm{du}=\cos (\mathrm{t}) \mathrm{dt}$. When $\mathrm{t}=0 \rightarrow \mathrm{u}=0$ and when $\mathrm{t}=\frac{\pi}{2} \rightarrow \mathrm{u}=1$ so 0 and 1 are the new limits of integration.

$$
f_{\text {avg }}=\frac{2}{\pi} \int_{0}^{1} e^{u} d u=\left.\frac{2}{\pi}\left(e^{u}\right)\right|_{0} ^{1}=\frac{2}{\pi}\left(e^{1}-e^{0}\right)=\frac{\mathbf{2}}{\boldsymbol{\pi}}(\boldsymbol{e}-\mathbf{1})
$$

Example: A hiking trail has an elevation given by:

$$
f(x)=60 x^{3}-650 x^{2}+1200 x+4500
$$

Where f is measured in feet above sea level and $\mathbf{x}$ represents horizontal distance along the trail in miles, with $0 \leq x \leq 5$. What is the average elevation of the trail?

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{5-0} \int_{0}^{5}\left(60 x^{3}-650 x^{2}+1200 x+4500\right) d x \\
& =\frac{1}{5} \int_{0}^{5}\left(60 x^{3}-650 x^{2}+1200 x+4500\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5}\left[\frac{60 x^{4}}{4}-\frac{650 x^{3}}{3}+\frac{1200 x^{2}}{2}+4500 x\right]_{0}^{5} \\
& =\frac{1}{5}\left[15(5)^{4}-\frac{650}{3}(5)^{3}+600(5)^{2}+4500(5)\right] \\
& =\frac{1}{5}\left[15(625)-\frac{650}{3}(125)+600(25)+4500(5)\right] \\
& =\frac{1}{5}\left[9375-\frac{81250}{3}+15000+22500\right] \\
& =\frac{1}{5}\left[46875-\frac{81250}{3}\right]=\frac{59375}{15}=\frac{\mathbf{1 1 8 7 5}}{3} \mathbf{f t} .=\mathbf{3 9 5 8} \frac{\mathbf{1}}{\mathbf{3}} \mathbf{f t} .
\end{aligned}
$$

The average elevation of the trail is slightly less than $3,960 \mathrm{ft}$.

The average value of a function bring us close to an important theoretical result. The Mean Value Theorem for Integrals says that if $f$ is continuous on $[a, b]$, then there is at least one point, $\boldsymbol{c}$, in the interval ( $\mathrm{a}, \mathrm{b}$ ) such that $f(c)$ equals the average value of $f$ on $(\mathrm{a}, \mathrm{b})$. In other words, the horizontal line $\boldsymbol{y}=\boldsymbol{f}_{\text {avg }}$ intersects the graph of $\boldsymbol{f}$ for some point $\boldsymbol{c}$ in (a, b).


Note: If $\boldsymbol{f}$ is not continuous, such a point might not exist.

Mean Value Theorem for Integrals:
Let $\boldsymbol{f}$ be continuous on the integral $[\mathrm{a}, \mathrm{b}]$. There exists a point $\boldsymbol{c}$ in $[\mathrm{a}, \mathrm{b}]$ such that

$$
f(c)=f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \quad \text { that is, } \int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Example: Find the point(s) on the interval $(0,1)$ at which $f(x)=2 x(1-x)$ equals its average value on $[0,1]$.

First find the average value:

$$
\begin{gathered}
f_{\text {avg }}=\frac{1}{1-0} \int_{0}^{1} 2 x(1-x) d x=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x \\
=\frac{2 x^{2}}{2}-\left.x\right|_{0} ^{1}=x^{2}-\left.\frac{2 x^{3}}{3}\right|_{0} ^{1}=1-\frac{2}{3}=\frac{\mathbf{1}}{\mathbf{3}}(\leftarrow \text { avg value })
\end{gathered}
$$

Now find the point(s), $x$, where $f(x)=\frac{1}{3}$

$$
\begin{gathered}
2 x(1-x)=\frac{1}{3} \\
2 x-2 x^{2}=\frac{1}{3} \quad(\text { solve the quadratic equation }) \\
0=2 x^{2}-2 x+\frac{1}{3} \quad(\text { use the quadratic formula }) \\
x=\frac{2 \pm \sqrt{4-4(2)\left(\frac{1}{3}\right)}}{2(2)} \approx \mathbf{0 . 2 1 1} \text { and } \mathbf{0 . 7 8 9}
\end{gathered}
$$

